Bugscope: Magnifying the Connection Between Students, Science, and Scientists

By Milton Chen

In 1999, Jim Dieckmann's fourth- and fifth-grade students in Chula Vista, California, studied insects by collecting specimens, obtaining information from Web sites on entomology, and creating multimedia reports. Together with their teacher, the students developed a set of guidelines, known as an assessment rubric, to evaluate their reports according to use of text, images, graphics, and sound.

A special school-university partnership provided these students with even more powerful learning experiences. Students sent their insects to nearby San Diego State University, which was connected to their school via fiber optic cable. Through two-way audio and video, scientists Steve Barlow and Kathy Williams guided the students in examining their insect specimens under an electron microscope. The students were visibly excited as they prepared for each online session with the scientists. While many fourth graders may never have heard of an "electron microscope," these 10- and 11-year-olds were actually using one. A related multimedia feature (digital video clips) shows how this project unfolds.

Partnership Provides Low-Cost Access to Advanced Technology

Five years ago, that project's use of advanced technology might have seemed out of reach for most schools. However, in 1999, another innovative partnership with the scientific community made the project done by Jim Dieckmann's class available to potentially every school in the country with an Internet connection.

With funding from the National Science Foundation, Illinois Consolidated Telephone Company, and others, the University of Illinois's Beckman Institute for Advanced Science and Technology launched Bugscope, where students around the country could queue up requests for their use? This is not a farfetched scenario. According to use of text, images, graphics, and sound.

Beckman scientists designed Bugscope as a Web-based project to be low-cost and sustainable by a small research group. They designed a Web interface for a remote control panel so that students, using their classroom computer and a Web browser, can control the microscope as they discuss their insects with the university's entomologists. Bugscope also helps to close the Digital Divide -- classrooms with minimal equipment, whether in the inner-city or an isolated rural area, can utilize Bugscope. Some schools have accessed Bugscope using a single computer and modem. Others have sophisticated computer labs with high-speed Internet connections. The project is available to K-12 schools at no cost.

Bugscope capitalizes on students' fascination with insects, like this hairy-legged water bug. Credit: Beckman Institute, Bugscope Project

By Milton Chen

Download This Page Download a PDF of this article

"What if expensive but important scientific instruments such as the Hubble telescope, electron microscopes, or even remote sensing satellites were on the network, and students could queue up requests for their use? This is not a farfetched scenario." -- Dr. Elliot Soloway, professor of computer science and education, University of Michigan, 1994

In 1999, Jim Dieckmann's fourth- and fifth-grade students in Chula Vista, California, studied insects by collecting specimens, obtaining information from Web sites on entomology, and creating multimedia reports. Together with their teacher, the students developed a set of guidelines, known as an assessment rubric, to evaluate their reports according to use of text, images, graphics, and sound.

A special school-university partnership provided these students with even more powerful learning experiences. Students sent their insects to nearby San Diego State University, which was connected to their school via fiber optic cable. Through two-way audio and video, scientists Steve Barlow and Kathy Williams guided the students in examining their insect specimens under an electron microscope. The students were visibly excited as they prepared for each online session with the scientists. While many fourth graders may never have heard of an "electron microscope," these 10- and 11-year-olds were actually using one. A related multimedia feature (digital video clips) shows how this project unfolds.

Partnership Provides Low-Cost Access to Advanced Technology

Five years ago, that project's use of advanced technology might have seemed out of reach for most schools. However, in 1999, another innovative partnership with the scientific community made the project done by Jim Dieckmann's class available to potentially every school in the country with an Internet connection.

With funding from the National Science Foundation, Illinois Consolidated Telephone Company, and others, the University of Illinois's Beckman Institute for Advanced Science and Technology launched Bugscope, where students around the country could queue up requests for their use? This is not a farfetched scenario. According to use of text, images, graphics, and sound.

Beckman scientists designed Bugscope as a Web-based project to be low-cost and sustainable by a small research group. They designed a Web interface for a remote control panel so that students, using their classroom computer and a Web browser, can control the microscope as they discuss their insects with the university's entomologists. Bugscope also helps to close the Digital Divide -- classrooms with minimal equipment, whether in the inner-city or an isolated rural area, can utilize Bugscope. Some schools have accessed Bugscope using a single computer and modem. Others have sophisticated computer labs with high-speed Internet connections. The project is available to K-12 schools at no cost.

Bugscope capitalizes on students' fascination with insects, like this hairy-legged water bug. Credit: Beckman Institute, Bugscope Project

Channeling Enthusiasm For Bugs

Since the first classroom logged onto Bugscope in March 1999, more than 1,500 students in almost 60 schools have participated, from kindergarten through high school. In 1999 alone, students collected over 4,000 images from the electron microscope. Bugscope's goal is to reach up to 100 classrooms a year. Dr. Clint Potter, project co-director, believes that "for most youngsters, bugs are second in popularity only to dinosaurs. We are hoping to channel that enthusiasm for bugs to get students interested in and excited about scientific research."
At a school in the Ozarks, a 10th-grade biology class used the electron microscope to examine small aquatic insects as indicators of water quality. The region faces issues of water pollution caused by runoff from chicken, hog, and cattle operations. The high school students collected insect larvae, daphnia, and snail eggs from local water sources and examined them under the microscope, making a total of 230 images. Teachers can apply to participate in Bugscope from the project's Web site. Credit: Beckman Institute, Bugscope Project

Doing "Real Science"

Teachers submitting evaluations emphasize the students' excitement and motivation and comment on the project's effective use of the Internet. As Pam Van Walleghen, a teacher at Urbana Middle School in Urbana, Illinois, testified, "Giving students the opportunity to do 'real science' using state-of-the-art technology is about as exciting as education can get." Bugscope engages students in the scientific process and gives them experience with the realities of scientific research.

Bugscope grew out of Chickscope, another Beckman Institute project that allowed students to study magnetic resonance images (MRI) of developing chicken embryos via the Web. Chickscope encountered problems with the high cost of the technology and the time commitment required from professional scientists. It now continues as an image database.

High School and College Students Act as Bugscope Staff

One key to the sustainability of Bugscope is the training of local high school students, who prepare the specimens and perform the initial microscope setup. Given the high cost of professional staff, a University of Illinois entomology major is employed to participate in the online discussion with students. Teachers report that their students respond very positively to communicating with the Bugscope team in real time while they are controlling the microscope.

The Bugscope project has also automated many project administration and data handling tasks. Online applications from teachers are automatically archived into a database for review and scheduling by staff. During each online session, images are stored for later retrieval by the classrooms or other interested groups.

This developing movement to place high-powered scientific instrumentation in the hands of students continues. Other remote-access projects involve students in using the Goldstone Apple Valley Radio Telescope and in exploring simulated Martian terrain using a Lego micro-rover.

In just seven years, Professor Elliot Soloway's vision of the Internet has become a reality, connecting students and teachers to scientists and their own high-tech tools.

The following Web sites appeared in this article:

* multimedia feature: www.glef.org/php/school.php?id=Clearview
* Bugscope: bugscope.beckman.uiuc.edu
* Chickscope: chickscope.beckman.uiuc.edu
* Lego micro-rover: planetary.org/rrrr/index.html

An adaption of this article is published in Edutopia: Success Stories for Learning in the Digital Age.

Novelx mySEM

The Only Compact Field Emission SEM Sub-10nm Resolution.

Electron Microscopes

Affordable New and Reconditioned Scanning Electron Microscopes

Agr by Google

Related Communities

This article is not related to any community.

Return | Top

This article is licensed under a Creative Commons License

Making List | Articles | Communities | Events | Contact | Help | About | Copyright